— Willem de Sitter Dutch cosmologist 1872 - 1934

"The Astronomical Aspect of the Theory of Relativity" (1933), We have thus two definitions of mass; one by the law of inertia: mass is the ratio between force and acceleration. We may call the mass thus defined the inertial or passive mass, as it is a measure of the resistance offered by matter to a force acting on it. The second is defined by the law of gravitation, and might be called the gravitational or active mass, being a measure of the force exerted by one material body on another. The fact that these two constants or coefficients are the same is, in Newton's system, to be considered as a most remarkable accidental coincidence and was decidedly felt as such by Newton himself. He made experiments to determine the equality of the two masses by swinging a pendulum, of which the bob was hollow and could be filled up with different materials. The force acting on the pendulum is proportional to its active mass, its inertia is proportional to its passive mass, so that the period will depend on the ratio of the passive and the active mass. Consequently the fact that the period of all these different pendulums was the same, proves that this ratio is a constant, and can be made equal to unity by a suitable choice of units, i.e., the inertial and the gravitational mass are the same. These experiments have been repeated in the nineteenth century by Bessel, and in our own times by Eötvös and Zeeman, and the identity of the inertial and the gravitational mass is one of the best ascertained empirical facts in physics-perhaps the best. It follows that the so-called fictitious forces introduced by a motion of the body of reference, such as a rotation, are indistinguishable from real forces. ...In Einstein's general theory of relativity there is also no formal theoretical difference, as there was in Newton's system. ...the equality of inertial and gravitational mass is no longer an accidental coincidence, but a necessity.